Exercise 2

Draw a sketch to illustrate the inequality in Eq. A.1-9. Are there any special cases for which it becomes an equality?

Solution

Eq. A.1-9 says that

$$
(\mathbf{u} \cdot \mathbf{v}) \mathbf{w} \neq \mathbf{u}(\mathbf{v} \cdot \mathbf{w})
$$

Using the definition of the dot product, we can write each side as

$$
\begin{aligned}
(\mathbf{u} \cdot \mathbf{v}) \mathbf{w} & =\left(|\mathbf{u}||\mathbf{v}| \cos \phi_{u v}\right)|\mathbf{w}| \hat{\mathbf{w}}
\end{aligned}=|\mathbf{u}||\mathbf{v}||\mathbf{w}| \cos \phi_{u v} \hat{\mathbf{w}}, ~=\left(\mathbf{u}(\mathbf{v} \cdot \mathbf{w})=|\mathbf{u}| \hat{\mathbf{u}}\left(|\mathbf{v}||\mathbf{w}| \cos \phi_{v w}\right)=|\mathbf{u} \| \mathbf{v}||\mathbf{w}| \cos \phi_{v w} \hat{\mathbf{u}}, ~ l\right.
$$

where $\phi_{u v}$ is the angle between \mathbf{u} and \mathbf{v} and $\phi_{v w}$ is the angle between \mathbf{v} and \mathbf{w}. For the two sides to be equal, \mathbf{u} and \mathbf{w} have to be parallel or antiparallel.

Figure 1: A sketch illustrating Eq. A.1-9.
$\mathbf{u} \cdot \mathbf{v}$ represents the product of \mathbf{v} 's magnitude and the component of \mathbf{u} in the direction of \mathbf{v}. This product is the factor by which \mathbf{w} is elongated. Similarly, $\mathbf{v} \cdot \mathbf{w}$ is the factor by which \mathbf{u} is elongated (here in the sketch a shortening occurs because \mathbf{v} and \mathbf{w} are almost perpendicular). In general, these elongated vectors point in different directions from one another.

