Exercise 2

Draw a sketch to illustrate the inequality in Eq. A.1-9. Are there any special cases for which it becomes an equality?

Solution

Eq. A.1-9 says that

$$(\mathbf{u} \cdot \mathbf{v})\mathbf{w} \neq \mathbf{u}(\mathbf{v} \cdot \mathbf{w}).$$

Using the definition of the dot product, we can write each side as

$$(\mathbf{u} \cdot \mathbf{v})\mathbf{w} = (|\mathbf{u}||\mathbf{v}|\cos\phi_{uv})|\mathbf{w}|\hat{\mathbf{w}} = |\mathbf{u}||\mathbf{v}||\mathbf{w}|\cos\phi_{uv}\hat{\mathbf{w}}$$
$$\mathbf{u}(\mathbf{v} \cdot \mathbf{w}) = |\mathbf{u}|\hat{\mathbf{u}}(|\mathbf{v}||\mathbf{w}|\cos\phi_{vw}) = |\mathbf{u}||\mathbf{v}||\mathbf{w}|\cos\phi_{vw}\hat{\mathbf{u}},$$

where ϕ_{uv} is the angle between **u** and **v** and ϕ_{vw} is the angle between **v** and **w**. For the two sides to be equal, **u** and **w** have to be parallel or antiparallel.

Figure 1: A sketch illustrating Eq. A.1-9.

 $\mathbf{u} \cdot \mathbf{v}$ represents the product of \mathbf{v} 's magnitude and the component of \mathbf{u} in the direction of \mathbf{v} . This product is the factor by which \mathbf{w} is elongated. Similarly, $\mathbf{v} \cdot \mathbf{w}$ is the factor by which \mathbf{u} is elongated (here in the sketch a shortening occurs because \mathbf{v} and \mathbf{w} are almost perpendicular). In general, these elongated vectors point in different directions from one another.